
FPGAs at the Command Line
By Bob Smith

Introduction
Wire-wrap and low cost TTL parts has made the puzzle-solving fun of digital logic
design accessible to hobbyists and engineers everywhere. Although TTL works
fine for small designs, it becomes expensive and time consuming for larger
designs. Field Programmable Gate Arrays (FPGAs) contain thousands or millions
of uncommitted gates and are almost ideal for large designs. The problem with
FPGAs is that you have to learn a design language (Verilog or VHDL) and that in
order to write even simple Verilog programs you need to set up a fairly complex
development environment. It is the latter problem, the development
environment, that this article addresses.

In this article you'll see how to install the Xilinx FPGA design tools, how to use
the Xilinx command line tools to compile a Verilog or VHDL design, how to
download the compiled code to an FPGA board, and how to automate the whole
process using a Makefile. The Xilinx command line tools are the same for both
Linux and Windows, making this article useful for almost anyone with a
computer (including Mac users using a Linux virtual machine).

The sample design for this article is a 28 bit counter which has the most
significant 8 bits visible on LEDs. It is counting transitions on a 12.5 MHz clock
giving the least significant LED a flash rate of about 6 Hertz. The circuit has a
counter reset line tied to a button.

The hardware used for this article is the Demand Peripherals Baseboard-4 which
has a Xilinx Spartan-3E, LEDs, buttons, and a USB interface for downloads and
user data. Since the Baseboard-4 is downloaded through a USB serial port it
doesn't require the expense and complexity of a separate JTAG dongle, or the
hassle of installing JTAG drivers. Not requiring JTAG drivers is particularly nice
for Linux developers. (I helped design the Baseboard-4 and one of our major
design goals was to allow USB serial downloads.)

Installing the Xilinx WebPACK Toolkit

Xilinx provides a set of free design tools, the WebPACK, that runs on both
Windows and on Linux. Xilinx supports the tools on Windows XP Professional
and on recent versions of Red Hat Enterprise Linux and SUSE Linux. While not
officially supported, WebPACK runs fine on XP Home Edition, Vista, and Ubuntu.

To get the tools working on your system you have to go through about a dozen
web pages to start the WebPACK download, wait for a 2.2 GB download, and then

go through another dozen or so screens for the installation. It is tedious, but
straightforward.

Start by going to the Xilinx download site at:
http://www.xilinx.com/support/download/index.htm. Skip the Search button and
scroll directly down to click on the "Download ISE WebPACK" link. This will take
you to a login page where you can select "Create Account" (since you probably
don't already have a Xilinx account). You will receive an email message with a
web link where you can go to finish the registration and to login. After logging
in for the first time you're asked to provide more information. The Next button
will take you to a screen that displays what Xilinx packages you are entitled to
download. Select ISE WebPack10.1 and click on the Next button.

The next page, the Product Registration and Download page, has your
registration ID. You might want to cut and paste this ID into a file for use in the
installation, and in case you want reinstall the package. This page also has
several links for documentation and two links for downloading WebPACK. It is
probably best not to click the large Download button as this tries to install
software on you PC. Instead, select the "Download Files Individually" link, and
then select the Download link which appears next to the file size. The 2.2 GB
download is going take awhile even on a relatively fast Internet link.

The WebPACK download file is in a "tar" format, which, while common on Linux,
is not well known on Windows. Windows users may need to install a package
such as Winzip (http://www.winzip.com) or WinRAR (http://www.winrar.com),
both of which can handle tar files.

Install the software by double-clicking setup.exe in the ZIP file or, for Linux, by
untarring the download file and running the "setup" script in the top level
directory. Windows users will need administrator privileges to install the
software. The default installation directory on Windows is C:\Xilinx\10.1 and on
Linux it is /opt/Xilinx/10.1. If installing on Linux as a non-root user, you might
want to create /opt/Xilinx/10.1 beforehand and give yourself write permission on
it.

The installation will ask if you want to do an immediate update and whether or
not to install the cable drivers. Saying "yes" to an immediate update is a good
idea but will trigger another 600 MB download. For this tutorial you do not need
the update and can safely postpone it. You can also say "no" to the "Install Cable
Drivers" option since the board we're using does not need JTAG drivers. The
installation takes ten or twenty minutes once all the licenses are accepted and
the installation options are set.

Test the installation on Windows by opening a Command Window and entering
the command C:\Xilinx\10.1\ISE\bin\nt\xst -h. On Linux the command is
/opt/Xilinx/10.1/ISE/bin/lin/xst -h. If everything is installed correctly you should
see a display of the usage of the xst command. From this point on I won't give
the full path to the command. You should either prepend the full path to the

command or modify your shell's execution path variable. A convenient way to do
this on Linux is to source /opt/Xilinx/10.1/ISE/settings32.sh.

Creating a Simple Counter in Verilog

The Xilinx tools can compile either Verilog or
VHDL and I've chosen Verilog for the test
program. Whether it VHDL or Verilog, you
have to tell the compiler about the hardware on
your FPGA board. The Xilinx "User Constraints
File" (.ucf) relates FPGA pin numbers or
locations to logical names for use in the Verilog
code. Consider, for example, the partial
schematic of the Demand Peripherals
Baseboard-4 shown in Figure 1. The
constraints file for this hardware might look
like that shown in Listing 1. The NET field is
the pin name as it appears in your Verilog
program. The LOC field is the pin location on
the physical FPGA. Xilinx specifies pin
locations as the letter P followed by the pin
number quad-flat-packs, and by the grid
location for parts in a ball grid array package.

The user constraints file can do
much more than just relate
Verilog names to pin numbers. It

can also add pull-up or pull-down resistors, set output current limits, set timing
constraints, and set output slew rate. Details about the user constraints file can
be found on the Xilinx web site by searching for "user constraints file". In
particular, additional information is available in this document:
http://toolbox.xilinx.com/docsan/data/alliance/dev/dev3.htm.

Use Notepad, vi, or your favorite editor to create a text file called counter.ucf
and copy Listing 1 into it. (All three files for this article are in a ZIP file in the
download section of the Demand Peripherals web site:
http://www.demandperipherals.com)

 NET "CLEAR" LOC = "P13" ; # Button 1
 NET "CK12" LOC = "P39" ; # 12.5 MHz clock
 NET "LED<0>" LOC = "P70" ; # LED 0
 NET "LED<1>" LOC = "P71" ; # LED 1
 NET "LED<2>" LOC = "P62" ; # LED 2
 NET "LED<3>" LOC = "P66" ; # LED 3
 NET "LED<4>" LOC = "P67" ; # LED 4
 NET "LED<5>" LOC = "P68" ; # LED 5
 NET "LED<6>" LOC = "P63" ; # LED 6
 NET "LED<7>" LOC = "P65" ; # LED 7

Listing 1: A User Constraints File for the
Baseboard-4

Figure 1: Baseboard-4
Schematic

The Verilog program for this tutorial
implements a simple counter that counts an
input clock and displays the high 8 bits on
the LEDs. A clear input can force the count
to zero. Figure 2 illustrates the circuit for
the Verilog design shown in Listing 2.

Copy the program shown in Listing 2 into a file called counter.v in your working
directory.

Compiling Your Verilog Counter for Xilinx FPGAs

Xilinx provides a graphical development environment called ISE. You'll be
issuing the same commands that ISE issues behind the GUI, but you'll be doing it
from the command line. It is the use of command line tools that makes it easy
automate the build process in a batch file or a makefile. ISE, the Xilinx GUI tool,
leaves its configuration in several binary files in your working directory. Using
just command line tools lets you clean the directory leaving only your original
text files. Having just text files for your design makes it easier to a user version
control and to extract meaningful differences between two versions of a design.

There is insufficient space in this tutorial to give detailed descriptions of the

Figure 2: A 28 Bit Counter

module counter(CLEAR, CK12, LED);
 input CLEAR; // Set counter=0
 input CK12; // Clock source
 output [7:0] LED; // Output display

 reg [27:0] count; // a 28 bit counter
 reg metaclear; // bring CLEAR into
 // our clock domain

 always @(posedge CK12)
 begin
 metaclear <= CLEAR;
 if (metaclear)
 count <= 0;
 else
 count <= count + 1;
 end

 assign LED = count[27:20]; // Set display

endmodule

Listing 2: counter.v, A 28 Bit Counter in
Verilog

commands but your download of the Xilinx tools includes comprehensive
manuals for the Xilinx command line tools. Look in
ISE/doc/usenglish/books/docs/

The first command, xst, synthesizes the Verilog file into a hardware design that is
saved as a netlist file with an .ngc extension. Xilinx's xst program is actually a
command line interpreter and it expects input from standard-in. Use an echo
command and a pipe operator to give xst input from standard-in if you want to
keep all of your build information in a Makefile. The only difference between
Windows and Linux for this article is in the echo command below. Linux requires
the quotes and Windows does not.

 echo "run -ifn counter.v -ifmt Verilog -ofn counter -p xc3s100e-4-vq100 \
 -opt_mode Speed -opt_level 1" | xst

You have to specify the input file, the input file format, the name of the output
file and the exact type of FPGA. If your goal is to learn VHDL and not Verilog,
you can change the input format in the above command from "Verilog" to
"VHDL", replace the 28 bit Verilog counter with its VHDL equivalent, and
continue reading the article as if it were about VHDL. Xst generates several
report files and directories, but the real output is a netlist file with an .ngc
extension that is required for the next command. You can examine the output
files and reports to better understand the how the synthesis works and an
appendix in the xst manual describes the output files and reports in detail.

The ngdbuild command further decomposes the design into FPGA native
elements such as flip-flops, gates, and RAM blocks.

 ngdbuild -p xc3s100e-4-vq100 -uc counter.ucf counter.ngc

It is the ngdbuild command that first considers the pin location, loading, and
timing requirements specified in the user constraints file. Like the other Xilinx
commands, ngdbuild produces several reports but its real output is a "Native
Generic Database" stored in a (.ngd) file.

The Xilinx map command converts the generic elements from the step above to
the elements specific to the target FPGA. It also performs a design rules check
on the overall design. The map command produces two files, a Physical
Constraints File file and a Native Circuit Description file, that are used in
subsequent commands.

 map -detail -pr b counter.ngd

The map command produces quite a few reports. As you gain experience with
FPGA design you may come to rely on these report to help identify design and
timing problems.

The place and route command (par) uses the Physical Constraints File and the

Native Circuit Description to produce another Native Circuit Description file
which contains the fully routed FPGA design.

 par -w counter.ncd parout.ncd counter.pcf

Output processing starts with the bitgen program which converts the fully routed
FPGA design into the pattern of bits found in the FPGA after download.

 bitgen -w -g StartUpClk:CClk -g CRC:Enable parout.ncd counter.bit counter.pcf

The bitgen program lets you specify which clock pin to use during initialization
and whether or not to generate a CRC checksum on the download image. Files
which contain a raw FPGA download pattern are called bitstream files and
traditionally has a .bit file extension. Bitstream files are good for downloads
using JTAG but since we're downloading over a USB serial connection one more
command is required to convert the bitstream file into a download file.

 promgen -w -p bin -o counter.bin -u 0 counter.bit

The promgen program is a utility that converts bitstream files into various PROM
file formats. The format for the Baseboard-4 is called bin so the promgen
command uses the -p bin option. The output of promgen, counter.bin, is what is
downloaded to the Baseboard-4.

All of the commands described above, including xst, ngdbuild, map, par, bitgen,
and promgen have excellent PDF manuals in either the
ISE/doc/usenglish/books/docs/xst directory or the ISE/doc/usgnglish/de/dev
directory of your WebPACK installation.

Listing 3 is a Makefile that captures the commands and dependencies described
above. Verilog does not lend itself to incremental compilation so just copying the
above commands into a .bat file or a shell file is practically as good as using a
Makefile.

Downloading Your Counter to an FPGA Board

Now that you've compiled your Verilog program you're ready to download it to
the Baseboard-4. Since the Baseboard-4 is powered by a USB cable it should be
plugged directly into a USB port on your computer and not through an
(unpowered) hub. The Baseboard-4 uses an FTDI245 USB serial interface and
you'll need the appropriate drivers for you operating system. Figure 3 shows the
Baseboard-4 powered from USB. You can clearly see the Xilinx FPGA in the
center of the board. The IC to the left of the FPGA is the FTDI FT245 and the
smaller IC to the lower left is a Xilinx CPLD that coordinates the download
between the FPGA and the USB interface.

On Windows you can plug the board in and you'll be prompted with the usual
"New Hardware Found" message. After loading the Windows driver for the
FTDI245 you may be asked to load a driver for a USB serial port. Looking at
System folder in the Control Panel will show which COM port was assigned to
the USB serial port. On my system it was assigned to COM5 so I'll use that for
the example. The Windows command to download the compiled Verilog code is
just:
 copy counter.bin /B COM5: /B

Linux ships with a driver for the FTDI245 and it will be loaded automatically
when you connect the Baseboard-4 to your system. Ubuntu users should watch
for a bug in Ubuntu in which the device driver for a USB Braille reader interferes
with all USB serial ports. On my system the FTDI USB serial port is assigned to
/dev/ttyUSB0. Linux does what is called post processing on data sent to a serial
port and you need to turn this off to prevent it from corrupting your download
file. The two commands needed to download the compiled Verilog code on Linux
are
 stty --file=/dev/ttyUSB0 -opost # No post processing
 cat counter.bin > /dev/ttyUSB0

Are the LEDs incrementing? If so, congratulations; you're on your way into the

Figure 3: A Baseboard-4 Downloaded from and Powered by USB

world of FPGA programming with Verilog!

Most FPGAs lose their programming when powered-down and most boards,
including the Baseboard-4 are ready for download immediately at power up. You
can also press the reset button to get the board ready for another download.
While not a requirement, it is considered polite to disable a USB device under
Window before you unplug it.

Dealing with JTAG

The Demand Peripherals Baseboard-4 and the XESS XSA-3S1000 are two
examples of FPGA boards that do not require JTAG for code download. Dealing
with JTAG at the command line is possible, but a common problem, especially for
Linux users, is first finding and installing the device driver that matches the
JTAG dongle that you buy. JTAG drivers are more standard and easier to install
on Windows, and for this reason many would-be Linux FPGA developers move to
Windows for FPGA development. I know one Linux user who does all of his
development on Linux and then copies his files to Windows for the JTAG
downloads.

The Xilinx command to manage JTAG devices and downloads is impact. It is a
command line interpreter similar to xst, and its internal commands and options
are described in full in Appendix C of the iMPACT User Guide at
http://toolbox.xilinx.com/docsan/xilinx4/data/docs/pac/preface.html. Xilinx
compatible JTAG dongles are available from several commercial sources, and
Appendix B of the iMPACT User Guide even has a schematic of at simple JTAG
dongle that attaches to a legacy parallel port.

The sub-commands to use inside iMPACT can vary a great deal depending on the
type of FPGA board that you are using. I've found that the easiest way to deal
with impact is to run ISE and invoke the GUI interface to impact the first time I
download to a board, and to then extract the impact sub-commands from from
the _impact.log file. Using this technique on the SparkFun Spartan 3E Breakout
and Development Board gives an iMPACT command of impact -batch impact.bat
where the batch file is:

setMode -ss
setMode -sm
setMode -hw140
setMode -spi
setMode -acecf
setMode -acempm
setMode -pff
setMode -bs
setCable -p auto
addDevice -p 1 -file counter.bit
Program -p 1 -defaultVersion 0
quit

Note the addDevice -p 1 sub-command in the above batch file. JTAG devices are
usually arranged as a string of devices and the addDevice sub-command specifies
which device in the chain of devices to program or examine. Some
manufacturers, such as Digilent, prefer PROMs that can be programmed directly
from JTAG. Other manufacturers, such as SparkFun, have you use JTAG to load
an FPGA program that then reads from a serial port, burning the received bytes
into the PROM. The Demand Peripherals Baseboard-4 is meant to be connected
to a PC, and since a download to the Baseboard-4 takes less than 100
milliseconds, it hardly seemed necessary to add a PROM and force the user into
the cost and driver issues associated with JTAG.

Conclusions and Next Steps

In this article I focused on two things, expressing your design as text files and
using just a few standard commands to compile and download your design.
Having your design in text files will make it easier for you to track changes and
will make it easier for you to add version control for your projects. Using
command line tools can be faster and is a nice way to better understand the
steps to convert a design from Verilog to a bitstream file. Even if you switch to a
GUI based approach later, at least you now have more appreciation for what is
actually going on.

You may have noticed another purpose in this article. It is an attempt to get a
working Verilog program is as few steps as possible. I meant this article to be
something of a "Hello, World!" program for Verilog.

The next steps are, of course, up to you. This article just got the tools working;
we didn't even scratch the surface on real Verilog design. My advice is for you to
select and buy two are three Verilog (or VHDL) books and read them cover-to-
cover.

Before leaving this project completely let's see if you can make a few simple
modifications to the program. Say Button 2 is on Pin 30 and that Button 3 is on
Pin 69. What would have to do to the .ucf file to add Button 2 as a "Hold" button
and Button 3 as a "Direction" button? What would you have to do to the Verilog
file to make the count freeze while Hold is being pressed? What would it take to
make the counter count down while Direction is being pressed?

Makefile to compile and download a simple Verilog program

DEVICE=xc3s100e-4-vq100
default: counter.bin

counter.ngc: counter.v
 echo "run -ifn counter.v -ifmt Verilog -ofn counter -p \
 $(DEVICE) -opt_mode Speed -opt_level 1" | xst

counter.ngd: counter.ngc counter.ucf
 ngdbuild -p $(DEVICE) -uc counter.ucf counter.ngc

counter.ncd: counter.ngd
 map -k 6 -detail -pr b counter.ngd

counter.pcf: counter.ngd
 map -k 6 -detail -pr b counter.ngd

parout.ncd: counter.ncd
 par counter.ncd parout.ncd counter.pcf

counter.bit: parout.ncd
 bitgen -g CRC:Enable -g StartUpClk:CClk -g Compress \
 parout.ncd counter.bit counter.pcf

counter.bin: counter.bit
 promgen -w -p bin -o counter.bin -u 0 counter.bit

install: counter.bin
 stty --file=/dev/ttyUSB0 -opost # We want raw output
 cat counter.bin > /dev/ttyUSB0

clean:
 rm -rf counter.bgn counter.bin counter.bit counter.bld \
 counter.drc counter.map counter_map.xrpt counter.mrp \
 counter.ncd counter.ngc counter.ngd counter_ngdbuild.xrpt \
 counter.ngm counter_par.xrpt counter.pcf counter.prm \
 counter_summary.xml counter_usage.xml counter_xst.xrpt \
 netlist.lst parout.ncd parout.pad parout_pad.csv \
 parout_pad.txt parout.par parout.ptwx parout.unroutes \
 parout.xpi xlnx_auto_0.ise xlnx_auto_0_xdb xst

Listing 3: A Makefile for Xilinx Command Line Tools.

	Introduction
	Installing the Xilinx WebPACK Toolkit
	Creating a Simple Counter in Verilog
	Compiling Your Verilog Counter for Xilinx FPGAs
	Downloading Your Counter to an FPGA Board
	Dealing with JTAG
	Conclusions and Next Steps

